631 research outputs found

    Relating near-Earth observations of an interplanetary coronal mass ejection to the conditions at its site of origin in the solar corona

    Get PDF
    A halo coronal mass ejection (CME) was detected on January 20, 2004. We use solar remote sensing data (SOHO, Culgoora) and near-Earth in situ data (Cluster) to identify the CME source event and show that it was a long duration flare in which a magnetic flux rope was ejected, carrying overlying coronal arcade material along with it. We demonstrate that signatures of both the arcade material and the flux rope material are clearly identifiable in the Cluster and ACE data, indicating that the magnetic field orientations changed little as the material traveled to the Earth, and that the methods we used to infer coronal magnetic field configurations are effective

    How Can Active Region Plasma Escape into the Solar Wind from below a Closed Helmet Streamer?

    Full text link
    Recent studies show that active-region (AR) upflowing plasma, observed by the EUV-Imaging Spectrometer (EIS), onboard Hinode, can gain access to open field-lines and be released into the solar wind (SW) via magnetic-interchange reconnection at magnetic null-points in pseudo-streamer configurations. When only one bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely that the upflowing AR plasma can find its way into the slow SW. However, signatures of plasma with AR composition have been found at 1 AU by Culhane et al. (2014) apparently originating from the West of AR 10978. We present a detailed topology analysis of AR 10978 and the surrounding large-scale corona based on a potential-field source-surface (PFSS) model. Our study shows that it is possible for the AR plasma to get around the streamer separatrix and be released into the SW via magnetic reconnection, occurring in at least two main steps. We analyse data from the Nan\c{c}ay Radioheliograph (NRH) searching for evidence of the chain of magnetic reconnections proposed. We find a noise storm above the AR and several varying sources at 150.9 MHz. Their locations suggest that they could be associated with particles accelerated during the first-step reconnection process and at a null point well outside of the AR. However, we find no evidence of the second-step reconnection in the radio data. Our results demonstrate that even when it appears highly improbable for the AR plasma to reach the SW, indirect channels involving a sequence of reconnections can make it possible.Comment: 26 pages, 10 figures. appears in Solar Physics, 201

    Flows and Non-thermal Velocities in Solar Active Regions Observed with the Extreme-ultraviolet Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?

    Full text link
    From Doppler velocity maps of active regions constructed from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft we observe large areas of outflow (20-50 km/s) that can persist for at least a day. These outflows occur in areas of active regions that are faint in coronal spectral lines formed at typical quiet Sun and active region temperatures. The outflows are positively correlated with non-thermal velocities in coronal plasmas. The bulk mass motions and non-thermal velocities are derived from spectral line centroids and line widths, mostly from a strong line of Fe XII at 195.12 Angstroms. The electron temperature of the outflow regions estimated from an Fe XIII to Fe XII line intensity ratio is about 1.2-1.4 MK. The electron density of the outflow regions derived from a density sensitive intensity ratio of Fe XII lines is rather low for an active region. Most regions average around 7E10+8 cm(-3), but there are variations on pixel spatial scales of about a factor of 4. We discuss results in detail for two active regions observed by EIS. Images of active regions in line intensity, line width, and line centroid are obtained by rastering the regions. We also discuss data from the active regions obtained from other orbiting spacecraft that support the conclusions obtained from analysis of the EIS spectra. The locations of the flows in the active regions with respect to the longitudinal photospheric magnetic fields suggest that these regions might be tracers of long loops and/or open magnetic fields that extend into the heliosphere, and thus the flows could possibly contribute significantly to the solar wind.Comment: one tex file, 11 postscript figure file

    Flows in the solar atmosphere due to the eruptions on the 15th July, 2002

    Get PDF
    <p>Which kind of flows are present during flares? Are they compatible with the present understanding of energy release and which model best describes the observations? We analyze successive flare events in order to answer these questions. The flares were observed in the magnetically complex NOAA active region (AR) 10030 on 15 July 2002. One of them is of GOES X-class. The description of these flares and how they relate to the break-out model is presented in Gary & Moore (2004). The Coronal Diagnostic Spectrometer on board SOHO observed this active region for around 14 h. The observed emission lines provided data from the transition region to the corona with a field of view covering more than half of the active region. In this paper we analyse the spatially resolved flows seen in the atmosphere from the preflare to the flare stages. We find evidence for evaporation occurring before the impulsive phase. During the main phase, the ongoing magnetic reconnection is demonstrated by upflows located at the edges of the flare loops (while downflows are found in the flare loops themselves). We also report the impact of a filament eruption on the atmosphere, with flows up to 300 km s<sup>-1</sup> observed at transition-region temperatures in regions well away from the location of the pre-eruptive filament. Our results are consistent with the predictions of the break out model before the impulsive phase of the flare; while, as the flare progresses, the directions of the flows are consistent with flare models invoking evaporation followed by cooling and downward plasma motions in the flare loops.</p&gt

    EUV emission lines and diagnostics observed with Hinode/EIS

    Full text link
    Quiet Sun and active region spectra from the Hinode/EIS instrument are presented, and the strongest lines from different temperature regions discussed. A list of emission lines recommended to be included in EIS observation studies is presented based on analysis of blending and diagnostic potential using the CHIANTI atomic database. In addition we identify the most useful density diagnostics from the ions covered by EIS.Comment: 14 pages, 3 figures, submitted to PASJ Hinode first results issu

    Multi-wavelength observations and modelling of a canonical solar flare

    Full text link
    This paper investigates the temporal evolution of temperature, emission measure, energy loss and velocity in a C-class solar flare from both an observational and theoretical perspective. The properties of the flare were derived by following the systematic cooling of the plasma through the response functions of a number of instruments -- RHESSI (>5 MK), GOES-12 (5-30 MK), TRACE 171 A (1 MK) and SOHO/CDS (~0.03-8 MK). These measurements were studied in combination with simulations from the 0-D EBTEL model. At the flare on-set, upflows of ~90 km s-1 and low level emission were observed in Fe XIX, consistent with pre-flare heating and gentle chromospheric evaporation. During the impulsive phase, upflows of ~80 km s-1 in Fe XIX and simultaneous downflows of 20 km s-1 in He I and O V were observed, indicating explosive chromospheric evaporation. The plasma was subsequently found to reach a peak temperature of ~13 MK in approximately 10 minutes. Using EBTEL, conduction was found to be the dominant loss mechanism during the initial ~300s of the decay phase. It was also found to be responsible for driving gentle chromospheric evaporation during this period. As the temperature fell below ~8 MK, and for the next ~4,000s, radiative losses were determined to dominate over conductive losses. The radiative loss phase was accompanied by significant downflows of <40 km s-1 in O V. This is the first extensive study of the evolution of a canonical solar flare using both spectroscopic and broad-band instruments in conjunction with a hydrodynamic model. While our results are in broad agreement with the standard flare model, the simulations suggest that both conductive and non-thermal beam heating play important roles in heating the flare plasma during the impulsive phase of at least this event.Comment: 10 pages, 7 figures, 2 tables. Accepted for publication in A&

    Strongly Blueshifted Phenomena Observed with {\it Hinode}/EIS in the 2006 December 13 Solar Flare

    Full text link
    We present a detailed examination of strongly blueshifted emission lines observed with the EUV Imaging Spectrometer on board the {\it Hinode} satellite. We found two kinds of blueshifted phenomenon associated with the X3.4 flare that occurred on 2006 December 13. One was related to a plasmoid ejection seen in soft X-rays. It was very bright in all the lines used for the observations. The other was associated with the faint arc-shaped ejection seen in soft X-rays. The soft X-ray ejection is thought to be an MHD fast-mode shock wave. This is therefore the first spectroscopic observation of an MHD fast-mode shock wave associated with a flare.Comment: 18 pages, 1 table, 6 figures. ApJ, accepte

    Simultaneous Observations of the Chromosphere with TRACE and SUMER

    Full text link
    Using mainly the 1600 angstrom continuum channel, and also the 1216 angstrom Lyman-alpha channel (which includes some UV continuum and C IV emission), aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended non-visible loops, or the base of an X-ray jet.Comment: 14 pages, 10 figures, accepted by Solar Physic
    corecore